Localization transition in SU(3) gauge theory

Réka Á. Vig work with Tamás G. Kovács

University of Debrecen, Hungary

Michigan State University, July 24, 2018

Finite temperature transition in QCD

Finite temperature transition of quarks:

hadronic state \rightarrow quark-gluon plasma

Around the crossover temperature three phenomena occur

Thermodynamic transition:

- confined → deconfined
- ullet broken chiral symmetrs o chiral symmetry restoration

Localization transition:

• low eigenmodes of the Dirac operator become localized

Mobility edge

Mobility edge

Aim of our work

low $T \to {\rm extended}$ modes high $T \to {\rm low}$ modes are localized Somewhere between $(T_c^{\,{\rm loc}}) \to {\rm the}$ localized modes (dis)appear

- \bullet We want to know $T_c^{\;\mathrm{loc}}$ where localized modes appear
- $\bullet \ \, \mathsf{Quenched} \ \, \mathsf{QCD} \!\! \to \mathsf{genuine} \, \, \mathsf{phase} \, \, \mathsf{transition}$
- Is $T_c^{\text{loc}} = T_c^{\text{deconf}}$?
- \bullet If yes \to the three phenomena are related

Critical temperature of localization

How to find T_c^{loc} ?

 \rightarrow Determine λ_c for different temperatures above $T_c^{\,\mathrm{deconf}}$

 $T_c^{\,\,\mathrm{loc}}$ will be the temperature where λ_c disappears:

$$\lambda_c(T_c^{\text{loc}}) = 0$$

to find λ_c at some $T \to \text{check}$ the statistics

Statistics of extended and localised modes

- extended modes are mixed by the gauge field
 → eigenvalues obey Wigner-Dyson statistics (RMT)
- localized modes are independent

 → eigenvalues obey Poisson statistics

Determine the mobility edge at some $T\to \text{e.g.}$ unfolded level spacing statistics

Analytic predictions are known for the unfolded spectrum.

Poisson and Wigner-Dyson statistics

Determine the statistics

Follow the change from localized modes to extended modes in the spectrum:

- \rightarrow Divide the spectrum into small bins
- \rightarrow Calculate a parameter of the statistics for each

Parameter→ the integrated probability distribution function

$$I_{s_0}(\lambda) \equiv \int_0^{s_0} P_{\lambda}(s) ds$$

Mobility edge from $I_{s0}(\lambda)$

Mobility edge from $I_{s0}(\lambda)$

The method

Change the gauge coupling β (temperature) \rightarrow get points of $\lambda_c(\beta)$ for fixed N_t

Then extrapolate β_c^{loc} with a power function: $p_1(x-\beta_c)^{p_2}$

We calculated β_c^{loc} for lattices with temporal extensions:

$$N_t = 4,6$$
 and 8

with staggered fermions + 2 stout

Extrapolation of the mobility edge

Comparsion of β_c for localization and deconfinement

We determined β_c for three lattice spacings

N_t	eta_c^{deconf}	eta_c loc
4	5.69254(24)	5.69246(50)
6	5.8941(5)	5.8935(16)
8	6.0624(10)	6.057(4)

Overlap operator

Do the same procedure with overlap operator for $N_t=6\,$

N_t	eta_c^{deconf}	eta_c loc
6	5.8941(5)	5.8927(64)

Summary and outlook

- Quenched QCD: a real first order deconfining/chiral phase transition
- Localization \rightarrow same β_c for localization and deconfinement
- Checked for staggered $N_t = 4,6,8$ and overlap $N_t = 6$
- Overlap: connection between localization and topology
 → see next talk

The end

Thanks for your attention!

Points very close to β_c

Parameters

	N_t	fit range (eta)	N_s	conf num (for one β)	eval num (for one conf)
stag- gered	4	5.695-5.71	32-48	2000	1000
	6	5.91-5.96	32-48	1000	1000
	8	6.08-6.18	48-64	700	600
overlap	6	5.91-5.96	32-40	300	80

Parameters

$$I_{s_0}^{Poisson} = 0.398, \qquad I_{s_0}^{RMT} = 0.117, \quad I_{s_0}(\lambda_c) \equiv I_{s_0}^{crit} = 0.1966$$